7月20日,優(yōu)必選研究院技術(shù)專家丁宏鈺在智東西公開課進(jìn)行了一場的直播講解,主題為《大型仿人機(jī)器人整機(jī)構(gòu)型研究與應(yīng)用》
在本次講解中,丁宏鈺老師首先從大型仿人機(jī)器人整機(jī)構(gòu)型國內(nèi)外研究現(xiàn)狀入手,圍繞機(jī)器人整機(jī)構(gòu)型、關(guān)節(jié)運(yùn)動(dòng)特點(diǎn)、伺服驅(qū)動(dòng)器、減速器、仿真平臺(tái)等方面進(jìn)行深度講解,最后就大型仿人機(jī)器人整機(jī)構(gòu)型未來發(fā)展趨勢(shì)給出自己的見解。
報(bào)告分為3個(gè)部分:
1、大型仿人機(jī)器人整機(jī)構(gòu)型研究現(xiàn)狀
2、優(yōu)必選大型仿人機(jī)器人整機(jī)構(gòu)型的研究及應(yīng)用
3、大型仿人機(jī)器人整機(jī)構(gòu)型的未來發(fā)展趨勢(shì)
智能機(jī)器人視覺方面的工作,主要體現(xiàn)在感知、理解、學(xué)習(xí)及推理4個(gè)方面,涉及到目標(biāo)檢測、目標(biāo)追蹤、人體姿態(tài)估計(jì)、人臉識(shí)別、行為識(shí)別、推理等技術(shù)
基于康復(fù)機(jī)器人內(nèi)部傳感器識(shí)別記錄訓(xùn)練過程中的運(yùn)動(dòng)學(xué)參數(shù),能夠?qū)崟r(shí)定量評(píng)估不同的運(yùn)動(dòng)模式,還能夠掌握患者是否主動(dòng)參與訓(xùn)練等情況
「Vision+Ask」的任務(wù)包含視覺問題生成、根據(jù)問題生成查詢、圖像描述等;「Vision+Answer」的任務(wù)包含視覺問答、視覺對(duì)話等
對(duì)于聯(lián)邦學(xué)習(xí)技術(shù),數(shù)據(jù)應(yīng)用推廣的經(jīng)驗(yàn),并深入探討聯(lián)邦學(xué)習(xí)在政務(wù),醫(yī)療,金融,廣告,物流的應(yīng)用價(jià)值,以期為數(shù)據(jù)應(yīng)用價(jià)值的釋放帶來解讀和參考
DeepTech通過科研數(shù)據(jù)分析、專家訪談等方式洞悉先進(jìn)計(jì)算領(lǐng)域發(fā)展趨勢(shì),探尋具備技術(shù)顛覆性,有商業(yè)化前景的先進(jìn)計(jì)算技術(shù),提煉出 2022 年先進(jìn)計(jì)算技術(shù)及應(yīng)用七大趨勢(shì)
一種基于水凝膠彈性體混合物的仿生機(jī)器皮膚.分為三層結(jié)構(gòu),中間的水凝膠層構(gòu)成機(jī)器皮膚的主體,可以實(shí)現(xiàn)電信號(hào)的傳遞,實(shí)現(xiàn)靜態(tài)和動(dòng)態(tài)觸覺的模態(tài)識(shí)別
HRI的MTL可以使機(jī)器人更輕松,更智能地與新用戶進(jìn)行交互,即使使用諸如RL這樣的數(shù)據(jù)密集型方法,也可以避免社交交互失敗的不利影響。MTL和多模態(tài)ML已用于自動(dòng)識(shí)別自閉癥譜系障礙(ASD)兒童
服務(wù)機(jī)器人潛在危險(xiǎn)有:電擊、與能量有關(guān)的危險(xiǎn)、著火、與熱有關(guān)的危險(xiǎn)、機(jī)械危險(xiǎn)、輻射、化學(xué)危險(xiǎn)等
視頻搜索是涉及信息檢索、自然語言處理(NLP)、機(jī)器學(xué)習(xí)、計(jì)算機(jī)視覺(CV)等多領(lǐng)域的綜合應(yīng)用場景
驅(qū)動(dòng)系統(tǒng)由4個(gè)200W無刷直流電機(jī)構(gòu)成,通過50:1的空心軸減速機(jī)可以最高達(dá)2m/s的速度在玉米、高粱等農(nóng)作物的地里前進(jìn)
通過2D激光雷達(dá)信息采用Hector SLAM實(shí)現(xiàn)機(jī)器人對(duì)地圖的感知和自主導(dǎo)航規(guī)劃,通過頂部的RGB-D相機(jī)采集目標(biāo)物體深度和RGB圖像信息
機(jī)器人的學(xué)習(xí)分為三個(gè)部分的軌跡預(yù)測包括示教者的手部運(yùn)動(dòng)軌跡、示教者的身體移動(dòng)軌跡以及被操作物體的運(yùn)動(dòng)軌跡
Cosero是德國波恩大學(xué)的Sven Behnke團(tuán)隊(duì)根據(jù)家庭環(huán)境中的日常操作任務(wù)而研制的一款仿人操作機(jī)器人基于深度學(xué)習(xí)方法的目標(biāo)姿態(tài)估計(jì)和RGB-D SLAM等感知測量
機(jī)器人、無人機(jī)、自動(dòng)駕駛汽車等加快落地,智慧城市深入建設(shè),更是為傳感器產(chǎn)業(yè)帶來了難以估量的龐大機(jī)遇
中國移動(dòng)聯(lián)合產(chǎn)業(yè)合作伙伴發(fā)布《室內(nèi)定位白皮書》,對(duì)室內(nèi)定位產(chǎn)業(yè)發(fā)展現(xiàn)狀及面臨的挑戰(zhàn),深入分析了垂直行業(yè)的室內(nèi)定位需求,并詳細(xì)闡述了實(shí)現(xiàn)室內(nèi)定位的技術(shù)原理, 及室內(nèi)定位評(píng)測體系
下一個(gè)十年,智能人機(jī)交互、多模態(tài)融合、結(jié)合領(lǐng)域需求的 NLP 解決方案建設(shè)、知識(shí)圖譜結(jié)合落地場景等將會(huì)有突破性變化
自然語言處理技術(shù)的應(yīng)用和研究領(lǐng)域發(fā)生了許多有意義的標(biāo)志性事件,技術(shù)進(jìn)展方面主要體現(xiàn)在預(yù)訓(xùn)練語言模型、跨語言 NLP/無監(jiān)督機(jī)器翻譯、知識(shí)圖譜發(fā)展 + 對(duì)話技術(shù)融合、智能人機(jī)交互、平臺(tái)廠商整合AI產(chǎn)品線
NVIDIA解決方案架構(gòu)師王閃閃講解了BERT模型原理及其成就,NVIDIA開發(fā)的Megatron-BERT